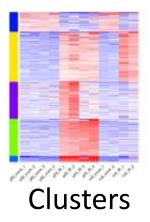
פכוז ויצמו לפדע WEIZMANN INSTITUTE OF SCIENCE

Gene set enrichment analysis (GSEA)

Ester Feldmesser Bioinformatics Unit


March 2020

http://dors.weizmann.ac.il/course/GSEA/

After performing a complex highthroughput experiment:

Microarrays Deep Sequencing Proteomics ... What did we get?

Lists of genes

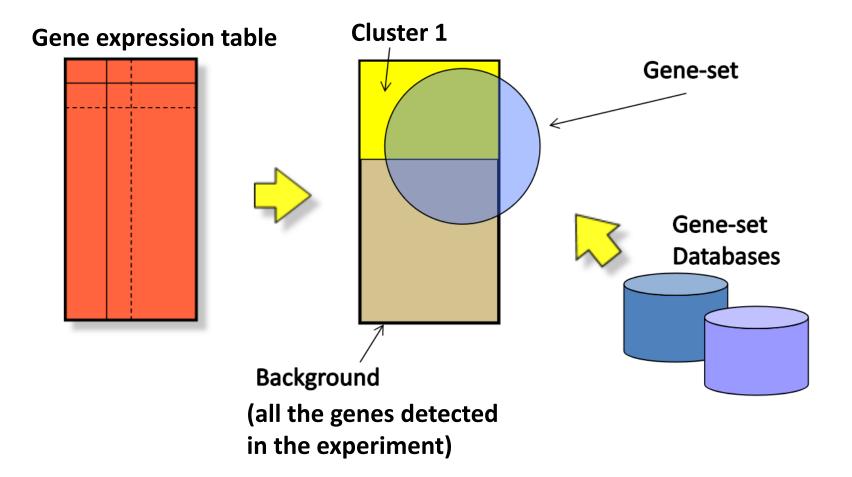
genome:-	-/S/BCloriginal	
ER+Nevins4	d31628_s_at	253,
ER+Nevins4	d31628_s_at	1396,
ER+Nevins4	d31628_s_at	209.
ER+Nevins4	d31716_at	655.
ER+Nevins4	d31716_at	116.
ER+Nevins4	d31716_at	596.
ER+Nevins4	d31716_at	119.
ER+Nevins4	d31762_at	573,
ER+Nevins4	d31762_at	104.
ER+Nevins4	d31762_at	507.
ER+Nevins4	d31762_at	88.
ER+Nevins4	d31763_at	698.
ER+Nevins4	d31763_at	149.
ER+Nevins4	d31763_at	593.
ER+Nevins4	d31763_at	115.
ER+Nevins4	d31764 at	2993.
ER+Nevins4	d31764_at	426.
ER+Nevins4	d31764_at	2882
ER+Nevins4	d31764_at	508.
ER+Nevins4	d31765 at	846
ER+Nevins4	d31765_at	140.
ER+Nevins4	d31765_at	1039
ER+Nevins4	d31765 at	207

Up regulated Down regulated

Functional Genomics: Find the Biological Meaning

- Take a list of "interesting" genes and find their biological meaning
 - Gene lists may come from significance/classfication analysis of microarrays, proteomics, or other high-throughput methods
- Requires a reference set of "biological knowledge"

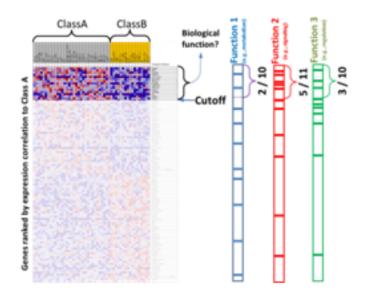
Sets of "Biological Knowledge"

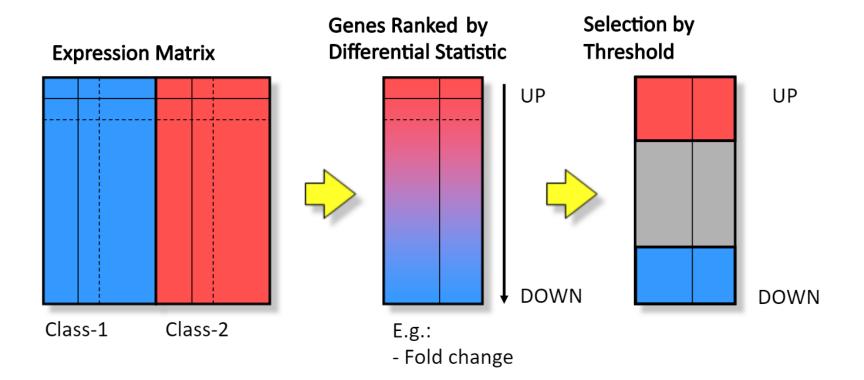

- Linking between genes and biological function:
 - Gene ontology: GO
 - Pathways databases
- Discovery of common sequences in co-regulated genes
- Meta-studies using data from multiple experiments
 - Pubic and private gene or protein expression databases

Enrichment analysis (the most frequently used)

• Find your group of interesting genes (DE, up, down, cluster)

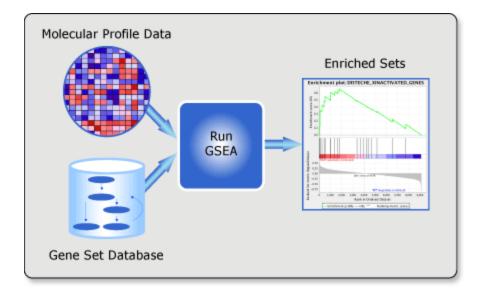
 Identify functional annotations that overlap and are over- represented (hypergeometric test).


Enrichment test (hypergeometric)


Is the overlap greater than expected by chance (random sampling of the background)?

Problems with cutoff-based analysis

- After correcting for multiple hypotheses testing, no individual gene may meet the threshold due to noise.
- Alternatively, one may be left with a long list of significant genes without any unifying biological theme.
- The cutoff value is often arbitrary!
- We are really examining only a handful of genes, totally ignoring much of the data



Design of functional enrichment analysis

Gene Set Enrichment Analysis (GSEA)

http://www.broadinstitute.org/gsea/index.jsp http://www.pnas.org/content/102/43/15545.full

Gene set enrichment analysis: A knowledgebased approach for interpreting genomewide expression profiles

Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S. Lander, and Jill P. Mesirov

PNAS October 25, 2005 102 (43) 15545-15550; published ahead of print September 30, 2005 https://doi.org/10.1073/pnas.0506580102

Contributed by Eric S. Lander, August 2, 2005

Article	Figures & SI	Info & Metrics	🗅 PDF

Abstract

Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancerrelated data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

Gene set database

 The gene sets are defined based on prior biological knowledge, e.g., published information about biochemical pathways or co-expression in previous experiments and more....

Collections

н

The MSigDB gene sets are divided into 8 major collections:

hallmark gene sets are coherently expressed signatures derived by aggregating many MSigDB gene sets to represent well-defined biological states or processes.

positional gene sets for each human chromosome and cytogenetic band.

C2 curated gene sets from online pathway databases, publications in PubMed, and knowledge of domain experts.

C3 motif gene sets based on conserved cisregulatory motifs from a comparative analysis of the human, mouse, rat, and dog genomes.

C4 computational gene sets defined by mining large collections of cancer-oriented microarray data.

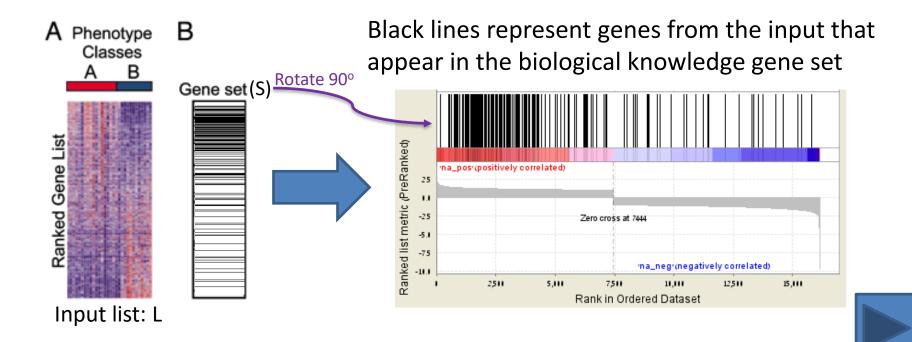
5 GO gene sets consist of genes annotated by the same GO terms.

C6 oncogenic signatures defined directly from microarray gene expression data from cancer gene perturbations.

immunologic signatures defined directly from microarray gene expression data from immunologic studies.

- Recommended as a starting point.
- Hallmark gene sets summarize and represent specific well-defined biological states or processes.
- The hallmarks reduce noise and redundancy and provide a better delineated biological space for GSEA.
- CGP: chemical and genetic perturbations.
- CP: Canonical pathways
 - CP:BIOCARTA
 - CP:KEGG
 - CP:REACTOME
- The user can define new gene sets

http://www.broadinstitute.org/gsea/msigdb/collections.jsp#H


GSEA features

- GSEA performs its analysis on a list of ranked genes derived from comparing between two conditions, there is no need of cutoffs to define up or down regulated genes.
- Given a ranked list of differentially expressed genes, the goal of GSEA is to determine whether members of a gene set tend to occur toward the top (or bottom) of the list, in which case the gene set is correlated with the phenotypic class distinction (conditions).

Subramanian et al, 2005, PNAS ; 102(43): 15545–15550, doi: 10.1073/pnas.0506580102

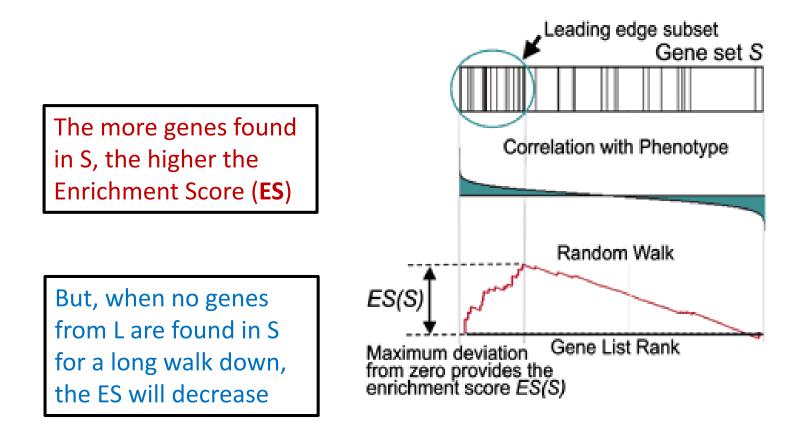
A GSEA overview illustrating the method

- Compute a gene-wise measure for differential expression between A and B and rank the genes according to this measure
- Alternatively a pre-ranked list can be used (L)
- Calculates a score for the enrichment of an entire set of genes

Pre-ranked gene list

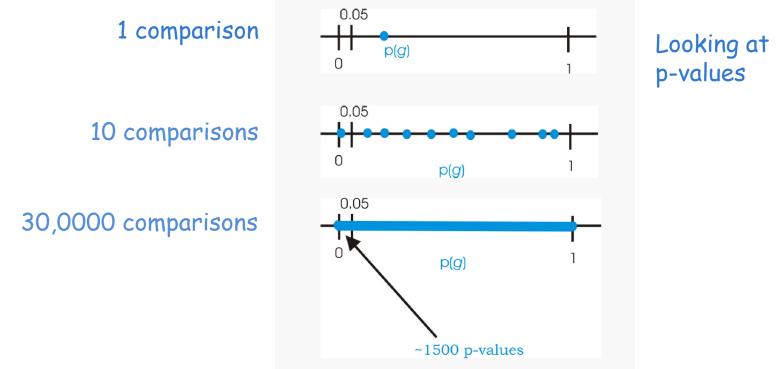
Using RNA-seq Datasets with GSEA

https://software.broadinstitute.org/cancer/software/gsea/wiki/ind ex.php/Using RNA-seq Datasets with GSEA

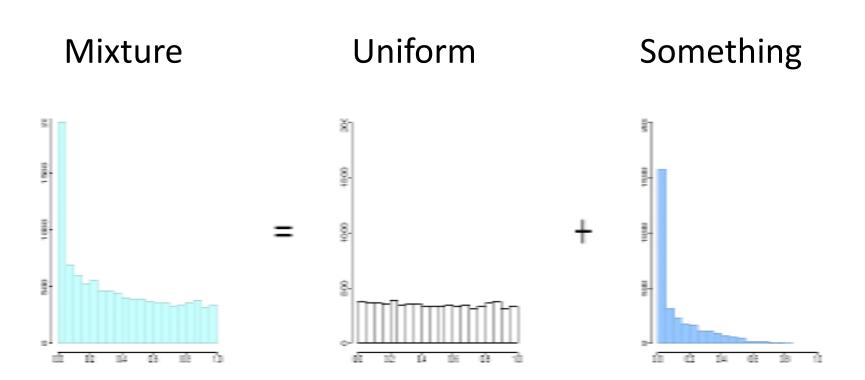

Alternative Method: GSEA-Preranked

- 1. Prior to conducting gene set enrichment analysis, conduct your differential expression analysis using any of the tools developed by the bioinformatics community (e.g., cuffdiff, edgeR, DESeq, etc).
- 2. Based on your differential expression analysis, rank your features and capture your ranking in an RNK-formatted file. The ranking metric can be whatever measure of differential expression you choose from the output of your selected DE tool: log2 fold change, p-value (-log10) or p-adjusted.

If up regulated genes in group A are enriched with genes from the Gene set S, many of its genes will have high ranks and we will observe a separation in the ordered list


Gene Set Enrichment Analysis

Steps:


- 1. Calculation of an Enrichment Score (ES): maximum deviation from zero encountered in the walk
- Normalization of the ES according to the sizes of the input list (L) and gene set (S), obtaining the normalized ES (NES).
- 3. Estimation of Significance Level of NES by permutations test
- 4. Adjustment for Multiple Hypothesis Testing

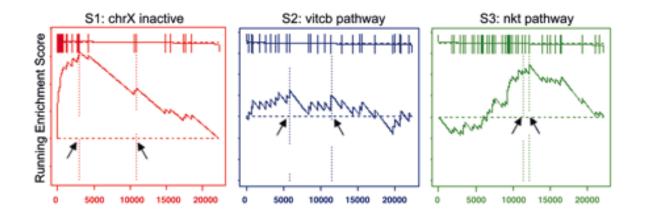
Multiple test correction

- FDR (False Detection Rate)
- Why? Multiple testing gene sets without overlap with our input list

The mixture interpretation of the p-value

Multiple comparison correction

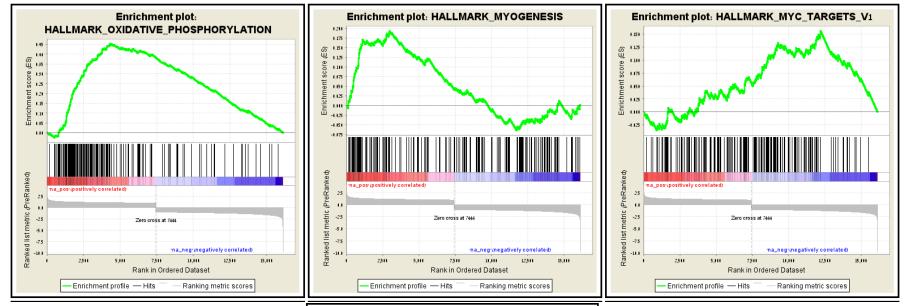
- False Discovery Rate (FDR) Adjust the pvalue in a way that ensures an expected proportion of false positives
- FDR-controlling procedures are designed to control the expected proportion of "discoveries" that are false

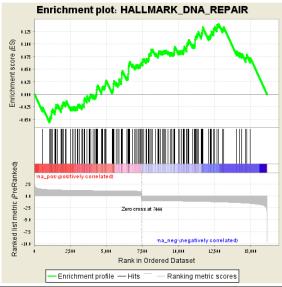

How many comparisons?

The FDR can change when:

- Using different Gene Sets
- Using a redundant Gene Sets

NG_PROTEINS


Examples from the paper



S1 is significantly enriched in females, S2 is randomly distributed and scores poorly, and S3 is not enriched at the top of the list but is nonrandom.

Arrows show the location of the maximum enrichment score and the point where the correlation (signal-to-noise ratio) crosses zero

More examples

Gene Set Enrichment Analysis

Advantages

- Ranking of all genes is considered
- No cutoff has to be chosen

GSEA output

mdx_cp.GseaPreranked.1455458082457

I	0	×	1	-	5			-			1		-	-				-	-
edb	BIOCARTA PROTEASO ME_PATH WAY.html	BIOCARTA PROTEASO ME_PATH WAY als	enplot_BIO CARTA_PR OTEASOME PATHW_	enplot_KEG G_ALZHEI MERS_DISE ASE 11.png	enplot_KEG G_AMINOA CYL_TRNA_ BIOSYNT	emplot_KEG G_CELL_AD HESION_M OLECULE_	enplot_KEG G_CHEMO KINE_SIGN ALING P	enplot_KEG G_CITRATE _CYCLE_TC A_CYCLE	enplot_KEG G_COMPLE MENT_AN D_COAG	enplot_KEG G_CYTOKI NE_CYTOKI NE_RECE	enplot_KEG G_HEMAT OPOIETIC_ CELL UN	enplot_KEG G_HUNTIN GTONS_DIS EASE 13.p.	G_OXIDATI VE_PHOSP	enplot_KEG G_PARKINS ONS_DISEA SE_R.png	enplot_NA BA_CORE_ MATRISOM E_71.png	enplot_NA BA_ECM_G LVCOPROT EINS_65.p	enplot_NA BA_ECM_R EGULATOR S_61.png	enplot, NA BA_MATRIS OME_ASSO CIATED 4	emplot_NA BA_SECRET ED_FACTO RS_49.png
-	1	10		5.		-	5							2					
enplot_REA CTOME_A NTIGEN_PR OCESSIN	enplot_REA CTOME_AU TODEGRAD ATION_O	enplot_REA CTOME_AU TODEGRAD ATION_0	enplot_REA CTOME_BR ANCHED_C HAIN_AM_		enplot_REA CTOME_CI TRIC_ACID_ CYCLE_T	enplot_REA CTOME_CL ASS_A1_RH ODOPSIN	englot_REA CTOME_G_ ALPHA_LSI GNALLIN	erglot_REA CTOME_GP CR_DOWN STREAM	enplot_REA CTOME_GP CR_LIGAND _BINOING	enplot_REA CTOME_IM MUNOREG ULATORY	enplot, REA CTOME_IN TERFERON_ ALPHA_B				enplot_REA CTOME_PY RUVATE_M ETABOLIS	englot_REA CTOME_RE SPIRATORY _ELECTR	englist_REA CTOME_RE SPIRATORY _ELECTR	enplot_REA CTOME_SI GNALING_ BY_GPCR	emplot, REA CTOME_SI GNALING_ BY_WNT
1	1	10			0		0			111				17.3				171	174
enplot, REA CTOME_TC A_CYCLE_A ND_RESPL.	enplot_REA CTOME_TR NA_AMINO ACVLATL.	emplot_REA CTOME_VIF _MEDIATED _DEGRAD	gene_set_si zes.xis	global_es_h istogram.p ing	gsea_report _for_na_ne g_14554580 82457.html	gsea_report _for_na_ne g_14554580 82457.xls	guea_report _for_ns_pos _145543808 _2457.html	giea_report _for_na_pos _145545808 _2457.xls				guet_md_es _dist_8.png		gset_md_es _dist_12.pn 9	gset_md_es _dist_14.pn 9	guet_md_es _dist_16.pn 9	giet,md,es _dist_18.pn _9	gset_md_es _dist_20.pn 9	giet_md_es _dist_22.pn _9
		1	1AA	16	In	171	144	TA.					A.	M		1			
gset_md_es _dist_24.pn	gset_md_es _dist_25.pn	gset_md_es _dist_28.pn	gset_rnd_es _dist_30.pn	gset_md_es _dist_32.pn	gset_md_es _dist_34.pn	gset_rnd_es _dist_36.pn	gset_md_es _dist_38.pn	giet_md_es _dist_40.pn	giet_md_es _dist_42.pn	gset_md_es _dist_44.pn	gset_md_es _dist_46.pn	gset_rnd_es _dist_48.pn	gset_md_es _dist_50.pn	gset_md_es _dist_52.pn	gset_rnd_es _dist_5Lpn	gset_rnd_es _dist_56.pn	gset_md_es _dist_58.pn	gset_md_es _dist_60.pn	giet_md_es _dist_62.pn
	İ	The second		,	'n	'n	F	m	Ô	Ó		Ó		Ó	3	Ó		Ó	
gset_md_es _dst_64.pn 9	gset_md_es _dist_66.pn g	gset_md_es _dist_68.pn _g	gset_rnd_es _dist_70.pn 9	gset_md_es _dist_72.pn g	gset_md_es _dist_74.pn _g	gset_rnd_es _dist_76.pn g	gset_md_es _dist_78.pn g	gset_md_es _dist_80.pn g	index.html	KEGG_ALZ HEIMERS_D ISEASE.htm	KEGG_ALZ HEIMERS_D ISEASE.xls	KEGG_AMI NOACVL_T RNA_BIOSY NTHESIS	KEGG_AMI NOACYL_T RNA_BIOSY NTHESIS.sls	KEGG_CELL _ADHESIO N_MOLECU LES_CAM	KEGG_CELL ADHESIO N_MOLECU LES.CAM_	KEGG_CHE MOKINE_SI GNALING_ PATHWA_	KEGG_CHE MOKINE_SI GNALING_ PATHWA	KEGG_CITR ATE_CYCLE _TCA_CYCL Ebteni	KEGG_CITR ATE_CYCLE _TCA_CYCLE _Exis
0		0		0		0		0		0			0		0		0		0
REGG_COM PLEMENT_ AND_COA GULATIO_	KEGG_COM PLEMENT_ AND_COA GULATIO	KEGG_CYT OKINE_CYT OKINE_REC UPTOR_IN	OKINE_REC	KEGG_HEM ATOPOETI C_CELL_LIN EAGE.html	KEGG_HEM ATOPOIETI C_CELL_LIN EAGEJIS	KEGG_HUN TINGTONS _DISEASE.ht ml	KEGG_HUN TBNGTONS _DISEASE_H	KEGG_OXED ATIVE_PHO SPHORYLA TIDN.html	KEGG_0XID ATIVE_PHO SPHORYLA TION.Ms	KEGG_PAR KINSONS_D ISEASE.htm 1	KEGG_PAR KINSONS_D ISEASE.xls	mds_cp.Gs eaPretanke d.14554580 82457.pt	NABA_COR E_MATRISO ME.html	NABA_COR E_MATRISO MExis	NABA_ECM _GLYCOPR OTEINS.ht ml	NABA_ECM _GLYCOPR OTEINS.xb	NABA_ECM _REGULAT ORS.html	NABA_ECM _REGULAT ORS.als	NABA, MA TRISOME, A SSOCIATED JMmi
	0		0	0	T		0		0		0		0		0		0	2	0
NABA,MA TRISOME,A SSOCIATED JIS	NABA_SEC RETED_FAC TORS.html	NABA_SEC RETED_FAC TORS.als	neg_snapsh ot.html	pos_snapsh ot.html	pvalues_vs_ nes_plot.pn g	ranked_gen #_list_na_p os_versus_n a_neg_14_	REACTOME ANTIGEN PROCESSIN G_UBIQUL	REACTOME ANTIGEN PROCESSIN G_UBQUL	REACTOME ,AUTODEG RADATION _OF_CDH	REACTOME AUTODEG RADATION _OF_CDH_	REACTOME AUTODEG RADATION OF_THE	REACTOME AUTODEG RADATION OF_THE	REACTOME BRANCHE D_CHAIN_ AMINO_A_	REACTOME BRANCHE D_CHAIN_ AMINO_A	REACTOME CHEMOKI NE_RECEPT ORS_EIN	REACTOME CHEMOID NE_RECEPT ORS_BIN	REACTOME CITRIC AC ID_CYCLE_ TCA_CYC	REACTOME CITRIC AC ID_CYCLE_ TCA_CYC	REACTOME CLASS_AL JRHODOPS INLIKE_R
	0	*	0		0		0		0		0		0		0		0		0
REACTOME _CLASS_AL _RHODOPS IN_LIKE_R	REACTOME .G.ALPHA, I_SIGNALLI NG_EVENL.	REACTOME G. ALPHA L.SIGNALU NG_EVEN	GPCR DO WINSTREA M_SIGNA_	REACTOME GPCR_DO WNSTREA M_SIGNA	REACTOME _GPCR_LIG AND_BINDI _NG_html	REACTOME GPCR_LIS AND_BINDI NG.sls	REACTOME JMMUNO REGULATO RY_INTER_	REACTOME IMMUNO REGULATO RY_INTER	REACTOME JINTERFER ON_ALPHA JETA_SL	REACTOME INTERFER ON_ALPHA _BETA_SL.	REACTOME INTERFER ON_GAMIM A_SIGNAL	REACTOME INTERFER ON_GAMM A_SIGNAL	METOCHO	REACTOME _MITOCHO NDRIAL_TR NA_AMIN		REACTOME _PEPTIDE_L IGAND_BIN DING_RE	REACTOME PYRUVATE METABOLI SM_AND	_PYRUVATE _METABOLI	REACTOME RESPIRAT ORV_ELECT RON_TRA
REACTOME RESPIRAT ORV_ELECT RON_TRA	REACTOME RESPIRAT ORY_ELECT RON_TRA	REACTOME RESPIRAT ORY_ELECT RON_TRA	REACTOME SIGNALIN G_BY_GPCR .html	REACTOME SISNALIN G_BY_GPCR JIS	REACTOME SIGNALIN G_BY_WNT. html	REACTOME SIGNALIN G_BY_WNT. XIs	REACTOME TCA_CYCL E_AND_RES PERATOR	REACTOME TCA_CVCL E_AND_RES PRATOR_	REACTOME TRNA AM INOACVLA TION.Internal	REACTOME TRNA AM INOACYLA TIDN.ds	REACTOME VIF_MEDIA TED_DEGR ADATION	REACTOME VIF MEDIA TED_DEGR ADATION	xtools.css						

index.html

GSEA Report for Dataset MdxVsMdxKO_Capital

Enrichment in phenotype: na

- · 297 / 957 gene sets are upregulated in phenotype na_pos
- 147 gene sets are significant at FDR < 25%
- 76 gene sets are significantly enriched at nominal pvalue < 1%
- 113 gene sets are significantly enriched at nominal pvalue < 5%
- <u>Snapshot</u> of enrichment results
- · Detailed enrichment results in html format
- Detailed enrichment results in excel format (tab delimited text)
- Guide to interpret results

Enrichment in phenotype: na

- 660 / 957 gene sets are upregulated in phenotype na_neg
- 379 gene sets are significantly enriched at FDR < 25%
- 216 gene sets are significantly enriched at nominal pvalue < 1%
- 293 gene sets are significantly enriched at nominal pvalue < 5%
- · Snapshot of enrichment results
- · Detailed enrichment results in html format
- Detailed enrichment results in excel format (tab delimited text)
- Guide to interpret results

Dataset details

- · The dataset has 16146 features (genes)
- · No probe set => gene symbol collapsing was requested, so all 16146 features were used

Gene set details

- · Gene set size filters (min=15, max=500) resulted in filtering out 373 / 1330 gene sets
- The remaining 957 gene sets were used in the analysis
- · List of gene sets used and their sizes (restricted to features in the specified dataset)

Gene markers for the na_pos versus na_neg comparison

- The dataset has 16146 features (genes)
- · Detailed rank ordered gene list for all features in the dataset

Global statistics and plots

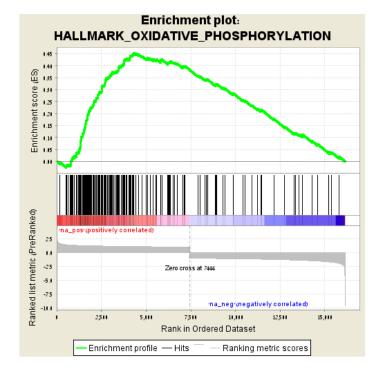
- Plot of <u>p-values vs. NES</u>
- <u>Global ES</u> histogram

Other

<u>Parameters</u> used for this analysis

Table: Gene sets enriched in phenotype na [plain text format]

	GS follow link to MSigDB	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX	LEADING EDGE
	HALLMARK_OXIDATIVE_PHOSPHORYLATION	Details	190	0.45	6.34	0.000	0.000	0.000	4319	tags=70%, list=27%, signal=94%
2	HALLMARK_MYOGENESIS	Details	194	0.19	2.70	0.000	0.000	0.000	2965	tags=36%, list=18%, signal=43%
3	HALLMARK_MYC_TARGETS_V1	Details	196	0.16	2.16	0.000	0.002	800.0	12217	tags=93%, list=76%, signal=377%
4	HALLMARK_DNA_REPAIR	Details	146	0.14	1.73	0.017	0.031	0.157	12784	tags=95%, list=79%, signal=450%
5	HALLMARK_FATTY_ACID_METABOLISM	Details	135	0.13	1.61	0.034	0.050	0.302	5634	tags=49%, list=35%, signal=74%
6	HALLMARK_HEME_METABOLISM	Details	162	0.12	1.55	0.032	0.058	0.391	3190	tags=30%, list=20%, signal=37%
7	HALLMARK_PROTEIN_SECRETION	Details	93	0.11	1.15	0.266	0.340	0.972	11931	tags=87%, list=74%, signal=332%
8	HALLMARK_SPERMATOGENESIS	Details	87	0.09	0.92	0.545	0.643	1.000	5292	tags=40%, list=33%, signal=60%
9	HALLMARK_PEROXISOME	<u>Details</u>	84	0.08	0.75	0.804	0.810	1.000	2821	tags=24%, list=17%, signal=29%


Gene	Set:	HALLMARK_	_OXIDATIVE_	PHOSPHORYLATION
------	------	-----------	-------------	-----------------

Standard name	HALLMARK_OXIDATIVE_PHOSPHORYLATION
Systematic name	M5936
Brief description	Genes encoding proteins involved in oxidative phosphorylation.
Full description or abstract	
Collection	H: hallmark gene sets
Source publication	
Exact source	
Related gene sets	(show 93 founder gene sets for this hallmark gene set)
External links	
Organism	Homo sapiens
Contributed by	Arthur Liberzon (Broad Institute)
Source platform	HUMAN_GENE_SYMBOL
Dataset references	(show 4 hallmark refinement datasets) (show 1 hallmark validation datasets)
Download gene set	format: grp text gmt gmx xml
Compute overlaps 2	(show collections to investigate for overlap with this gene set)
–	
Compendia expression profiles 🛿	Human tissue compendium (Novartis) NCI-60 cell lines (National Cancer Institute)
Advanced query	Further investigate these 200 genes
Gene families 🛛	Categorize these 200 genes by gene family
Show members	(show 200 members mapped to 200 genes)
Version history	5.0: First introduced

See MSigDB license terms here. Please note that certain gene sets have special access terms.

Table: GSEA details [plain text format]

Table: GS	EA Results Summary
Dataset	MduV-MduKO, Constal
Dataset	MdxVsMdxKO_Capital
Phenotype	NoPhenotypeAvailable
Upregulated in class	na_pos
GeneSet	HALLMARK_OXIDATIVE_PHOSPHORYLATION
Enrichment Score (ES)	0.4527396
Normalized Enrichment Score (NES)	6.337497
Nominal p-value	0.0
FDR q-value	0.0
FWER p-Value	0.0

	PROBE	GENE SYMBOL	GENE_TITLE	RANK IN GENE LIST	RANK METRIC SCORE	RUNNING ES	CORE ENRICHMENT
1	MAOB			167	1.659	-0.0033	Yes
2	VDAC1			519	1.447	-0.0190	Yes
3	IDH3A			533	1.441	-0.0136	Yes
4	VDAC3			641	1.413	-0.0141	Yes
5	ATP50			722	1.393	-0.0131	Yes
6	<u>COX15</u>			773	1.382	-0.0102	Yes
7	<u>COX11</u>			780	1.380	-0.0046	Yes
8	<u>NQO2</u>			781	1.380	0.0014	Yes
9	<u>SDHA</u>			807	1.374	0.0058	Yes
10	ALDH6A1			858	1.363	0.0085	Yes
11	NDUFB2			859	1.363	0.0145	Yes
12	PRDX3			896	1.357	0.0181	Yes
13	<u>CS</u>			973	1.346	0.0192	Yes
14	SLC25A12			977	1.345	0.0248	Yes
15	ATP5E			1075	1.332	0.0245	Yes
16	PDP1			1078	1.331	0.0302	Yes
17	IDH3G			1088	1.329	0.0354	Yes
18	NDUFS1			1117	1.326	0.0394	Yes
19	UQCRC2			1213	1.313	0.0391	Yes
20	<u>FXN</u>			1231	1.311	0.0437	Yes
21	SUCLA2			1237	1.311	0.0491	Yes
22	NDUFV2			1272	1.306	0.0526	Yes
23	NDUFB4			1284	1.305	0.0576	Yes
24	NDUFA5			1305	1.303	0.0620	Yes
25	PMPCA			1306	1.303	0.0676	Yes
26	<u>ACO2</u>			1319	1.301	0.0725	Yes
27	ISCU			1320	1.301	0.0782	Yes
28	BCKDHA			1334	1.300	0.0830	Yes

HALLMARK_OXIDATIVE_PHOSPHORYLATION: Random

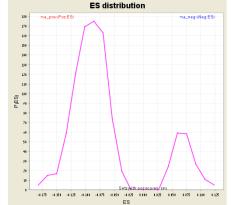


Fig 2: HALLMARK_OXIDATIVE_PHOSPHORYLATION: Random ES distribution Gene set null distribution of ES for HALLMARK_OXIDATIVE_PHOSPHORYLATION