Multiple sequence alignment

Irit Orr
Shifra Ben-Dor
An example of Multiple Alignment

VTISCTGSSSNIGAG–NHVKWYQLPG
VTISCTGTSSNIGS—–ITVNWYQLPG
LRLSCSSSGFISSF—–YAMYWVRQAPG
LSLTCVTSGTSFDD—–YYSTWVRQPPG
PEVTCVVVVDVSHEDPQVKNWYVDG—–
ATLVCLISDFYPGA—–VTVAWKADS—–
AALGCLVKDYFPEP—–VTVSWNSG—–
VSLTCLVKGFYPSD—–IAVEWWSNG—–
An important contribution of Molecular Biology studies was the following discovery:

- Similar genes are conserved across widely divergent species, often performing identical or similar function.

- Sometimes these genes are mutated and their function altered according to natural selection.
Why do we need multiple alignments?

- Multiple alignment, whether made of DNA or protein sequences, can yield much more information than analysis of a single sequence (or even 2).

- When dealing with a new protein with unknown function, the presence of several domains similar to domains in other “known” sequences, can imply a similar structure or function.
Why do we need multiple alignments?

- It is known that selective pressure of evolution results from the need to conserve a function.

- In proteins, maintaining their function generally requires a specific 3D structure. Thus, protein multiple alignments can give some information about the 3D structure.
MULTIPLE ALIGNMENT

Homology Modeling

Phylogenetic Analysis

Advanced Database Searches, Patterns, Motifs, Promoters
Why do we need multiple alignments?

- In order to reveal the relationship between a group of sequences. (homology)
- In order to characterize protein families - to identify conserved regions of a specific family, and locate its variable regions.
- In order to retrieve information about domains or active sites. Similar regions may indicate similar functions. (e.g. promoter regions in DNA)
Why do we need multiple alignments?

– To plan point mutations based upon highlighted regions of multiple alignments, either very similar or very different.

– To build a family profile for use in a more sensitive database scan. Such a search can find new (more distant) members of the family.

– Determination of the consensus sequence of several aligned sequences, for further analysis.
Why do we need multiple alignments?

- Planning probes in order to fish out distant members of a protein family.
- Multiple alignments are used for protein modeling programs.
- To help prediction of secondary and tertiary structures of new sequences.
Why do we need multiple alignments?

- Multiple alignments are input for constructing phylogenetic trees.
Finding optimal alignment between a group of sequences that include: matches, mismatches and gaps is very difficult.

For Pairwise Alignments, Dynamic Programming methods are used, but they are impractical with multiple alignments (too many calculations, too much CPU time).
The Computational Challenge of MSA

- The difficulties with aligning a group of sequences varies with the degree of similarity between the sequences.

- High degree of variation of the compared sequences – many alignments possible.

- Many possibilities – very hard to find “optimal” alignment.
The Computational Challenge of MSA

- **Approximate methods** are used instead of Dynamic programming methods.

- Another computational challenge is placement and scoring of gaps in the aligned sequences.
1) Progressive global alignment:

Starts with the most similar sequences, and builds the alignment by adding the rest of the sequences.

2) Iterative methods:

Starts by making initial alignments of small groups of sequences, and then revises the alignment for better results.
Approximate Methods

3) Alignment based on small conserved domains (or patterns), found in the same order within the aligned sequences.

4) Alignment based on statistical or probabilistic models of the sequences.
Various Multiple Alignment algorithms:

- Clustalw
- T-Coffee
- Muscle
- PRALINE
- MultAlign
- DiAlign
- Probcons
- BLOCKS
- HMMER
- SAM
- Pileup
Global multiple alignment methods

Clustalw
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_clustalw.html

PRALINE
http://ibivu.cs.vu.nl/programs/pralinewww/
Iterative multiple alignment methods

Muscle
http://www.ebi.ac.uk/Tools/muscle/index.html

DIALIGN
http://bibiserv.techfak.uni-bielefeld.de/dialign/

MultAlin
http://bioinfo.genotoul.fr/multalin/multalin.html
Local multiple alignment methods

BLOCKS
http://blocks.fhcrc.org/blocks/

HMMER
http://hmmer.janelia.org/

MEME
http://meme.sdsc.edu/

SAM
http://www.cse.ucsc.edu/research/compbio/sam.html
Multiple Alignment

- The most practical and widely used method for multiple alignment is progressive global alignment.

- How does it work?
Steps to create a multiple alignment

- Pairwise comparisons of all sequences
 - Perform cluster analysis on the pairwise data to generate a hierarchy for alignment. This may be in the form of a binary tree or simple ordering tree.
 - Start with the most related (similar) sequences, then the next most similar pair and so on. Once an alignment of two sequences has been made, then this is fixed.
Steps in Progressive Multiple Alignment

1) Pairwise Alignment

- 6 Pairwise comparisons
- then cluster analysis

2) Multiple Alignment following the tree

- Align most similar pair
 - gaps to optimize alignment
- Align next most similar pair
- Align alignments, preserve gaps
 - New gap to optimize alignment of BD with AC
Tips in choosing your sequences

General considerations

- Sequences taken directly from the database can contain irrelevant data, (e.g: multiple genes, fragments of different lengths). Check your sequences and use only the relevant parts of them for the alignment.
- If you align your own sequences, edit them and remove the unrelated data before alignment.
- Try to use sequences with more or less the same length for alignment.
Tips in choosing your sequences

General considerations

For most uses of multiple alignments:

- The more sequences you align the better.
- Don’t include similar (>80%) sequences.
- Sub-groups should be pre-aligned separately, and one member of each subgroup should be included in the final multiple alignment.
What you need to know about multiple alignment programs

- Almost all programs will align whatever sequences the user gives as input.
- They will always return an alignment, even if the sequences are completely unrelated. The biology thinking should be done by you.
- Most programs will insert gaps. However, if inserted they are there to stay.
- You need to check how the program you use treats end gaps.
ClustalW- for multiple alignment

- ClustalW is a global multiple alignment program for DNA or protein.

- ClustalW was produced by Julie D. Thompson, Toby Gibson of EMBL, Germany and Desmond Higgins of EBI, Cambridge, UK.

ClustalW can create multiple alignments, manipulate existing alignments and create phylogenic trees. The initial alignment can be done by 2 methods:
- slow/accurate
- fast/approximate
ClustalW alignment Method

ClustalW alignment algorithm consists of 3 steps:

1) Pairwise Alignments are performed between all sequences in the compared group. Alignment scores are used to build a distance matrix. In calculating the distance matrix, the program takes into account the divergence of the sequences.
ClustalW alignment Method

2) A guide (phylogenetic) tree is created from the distance matrix using the Neighbour-Joining method. This guide tree has branches of different lengths. Their length is proportional to the estimated divergence along each branch.
3) Progressive alignment of the sequences is done, following the branch order of the guide tree. The sequences are aligned from the tips to the root.

The alignment of the sequences is guided by the phylogenetic relationships indicated by the tree.
ClustalW alignment Method

- At each stage of the progressive alignment full dynamic programming is applied, and uses a scoring matrix.

- The program calculates sequence weights from the guide tree, and chooses the scoring matrix accordingly (according to the divergence of the compared sequences).
Clustalw calculates the genetic distances as follows:

\[
\frac{\# \text{ mismatches in the alignment}}{\# \text{ matches in the alignment}}
\]

Positions opposite a gap are not scored.
ClustalW alignment Method

- Clustalw weights the sequences according to the distance of each sequence from the root.

- Clustalw calculates gaps in a novel way, designed to place them between conserved domains.

- Clustalw penalizes for gap opening and extension.
Running ClustalW

The input file for ClustalW is a single file containing all of the sequences for alignment.

It accepts the following formats:
NBKF/PIR, EMBL/SwissProt, Pearson (Fasta), GDE, Clustal, GCG/MSF, RSF.
Using ClustalW

***** MULTIPLE ALIGNMENT MENU *****
1. Do complete multiple alignment now (Slow/Accurate)
2. Produce guide tree file only
3. Do alignment using old guide tree file
4. Toggle Slow/Fast pairwise alignments = SLOW
5. Pairwise alignment parameters
6. Multiple alignment parameters
7. Reset gaps between alignments? = OFF
8. Toggle screen display = ON
9. Output format options

S. Execute a system command
H. HELP
or press [RETURN] to go back to main menu

Your choice:
CLUSTAL W (2.012) multiple sequence alignment
ClustalW options

Your choice: 5

********** PAIRWISE ALIGNMENT PARAMETERS **********

Slow/Accurate alignments:

1. Gap Open Penalty : 15.00
2. Gap Extension Penalty : 6.66
3. Protein weight matrix : BLOSUM30
4. DNA weight matrix : IUB

Fast/Approximate alignments:

5. Gap penalty : 5
6. K-tuple (word) size : 2
7. No. of top diagonals : 4
8. Window size : 4

9. Toggle Slow/Fast pairwise alignments = SLOW

H. HELP
Enter number (or [RETURN] to exit):
ClustalW options

Your choice: 6

********* MULTIPLE ALIGNMENT PARAMETERS *********

1. Gap Opening Penalty : 15.00
2. Gap Extension Penalty : 6.66
3. Delay divergent sequences : 40 %

4. DNA Transitions Weight : 0.50

5. Protein weight matrix : BLOSUM series
6. DNA weight matrix : IUB
7. Use negative matrix : OFF

8. Protein Gap Parameters

H. HELP

Enter number (or [RETURN] to exit):
ClustalX - Multiple Sequence Alignment Program

- ClustalX provides a window-based user interface to the ClustalW program.
- It uses the Vibrant multi-platform user interface development library, developed by the National Center for Biotechnology Information (NCBI) as part of the NCBI software development toolkit.
ClustalX
ClustalX
ClustalX
ClustalX
ClustalX

Multiple Alignment

- Do Complete Alignment
- Produce Guide Tree
- Do Alignment from Tree
- Realign Selected Sequences
- Realign Selected Residue Range
 - Align Profile 2 to Profile 1
 - Align Profiles from Tree
 - Align Sequences to Profile 1
- Reset Gaps between Alignments
- Save Log File
- Alignment Parameters
- Output Format Options
ClustalX

[Diagram of ClustalX software interface showing multiple alignment of DNA sequences with various options in the menu bar and help options.]
Displaying a multiple alignment in GCG

There are several programs to display the multiple alignment prettily.

The most commonly used one is PrettyBox

The PrettyBox program displays the alignment graphically with the conserved regions of the alignment as shaded boxes. The output is in Postscript format.
Example of PrettyBox Output
You can also run Prettybox on the output of ClustalW. It requires a few steps:

1) Before you run the alignment:
 Choose output format options, and choose GCG/MSF

2) Before you run prettybox:
 Change all of the weights to 1, or it will color the picture incorrectly.
Problems with Progressive alignments

- In progressive alignment the ultimate multiple alignment is dependent on the initial pairwise alignments.
 - The first sequences to be aligned are the most similar (closely related on the tree).
 - If the initial alignments are good, with very few errors, the ultimate multiple alignment will generally be good.
- However, if the sequences aligned are distantly related, many more errors can be made, affecting the quality of the final alignment.
Problems with progressive alignments

<table>
<thead>
<tr>
<th>CLUSTALW (Score=20, Gop=-1, Gep=0, M=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeqA GARFIELD THE LAST</td>
</tr>
<tr>
<td>SeqB GARFIELD THE FAST</td>
</tr>
<tr>
<td>SeqC GARFIELD THE VERY</td>
</tr>
<tr>
<td>SeqD --------- THE ----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CORRECT (Score=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeqA GARFIELD THE LAST</td>
</tr>
<tr>
<td>SeqB GARFIELD THE FAST</td>
</tr>
<tr>
<td>SeqC GARFIELD THE VERY</td>
</tr>
<tr>
<td>SeqD --------- THE ----</td>
</tr>
</tbody>
</table>

Figure from JMB Vol 302, pp205-217, 2000
Problems with Progressive alignments

- Another problem with progressive alignment is that the ultimate multiple alignment is dependent on choosing the correct scoring matrices, and the correct gap penalty
ClustalW 2.0

- Added two changes
 - UPGMA for faster trees than NJ
 - Iteration - removes one sequence and realigns
- Iteration
 - In each step (more accurate, but more time consuming)
 - In the final tree (improves alignment, saves time)
Muscle – Fast tool for Multiple Alignment

Muscle (Multiple Sequence Comparison by log-expectation) is cited:

Muscle on the WEB
http://www.ebi.ac.uk/Tools/muscle/index.html
Muscle first stage
Draft Alignment

Building the Guide Tree ("k-mer clustering"): Calculates number of matching “words”, and calculates distances without doing alignments, builds a distance matrix, and then a tree (UPGMA)

Progressive alignment
Following the guide tree 1, from the tips to the root, and at each node aligns either 2 sequences, sequence/profile or profile/profile
Unaligned seqs

Calculate K-mers

K-mer distance matrix

UPGMA

Tree 1

Progressive Alignment

First Multiple Alignment
Muscle Second stage
Improved alignment

Optimization ("tree refinement"): Using the multiple alignment as a base, compute pairwise identities for each of the sequence pairs.

- **Build a distance matrix 2** (Kimura distance)
- **Build a new tree (UPGMA)**.

Progressive alignment is done following the guide tree 2, resulting in Multiple Alignment 2.
First Multiple Alignment

\[\text{Compute pairwise \%} \]

Kimura distance matrix

Tree 2

Progressive Alignment

Second Multiple Alignment
Muscle Third stage
Multiple Alignment Refinement

This tree is divided into 2 subtrees. (taking an edge off the tree to create the two groups)

The sequences in the subtree are used to build a multiple alignment and then a profile.

By realigning the 2 profiles a new multiple alignment is built.
Muscle Third stage
Multiple Alignment Refinement

If this new alignment improves the score, it is kept. Otherwise it is discarded.

This is done for all the edges in the tree (from the edges to the root.)

The whole step is iterated until convergence, or a user defined limit.
Second Multiple Alignment

Delete an edge

subtree1

Compute subtree profile

subtree2

Better SP? Save

Not better? Delete

Realign profiles

Third Multiple Alignment
Muscle Summary

- Fast
- Works with a large group of sequences
- Sequence length is not important
T-Coffee

- T-Coffee in the WEB
 http://www.tcoffee.org/
T-Coffee first step: Creating the primary library

Builds a set of all pairwise alignments between all sequences in the dataset

- **Global** alignments of all against all using CLUSTALW
- **Local** alignments of all against all using LALIGN

- In the library – each alignment = a list of pairwise residue matches
ClustalW Primary Library (Global Pairwise Alignment)

Lalign Primary Library (Local Pairwise Alignment)
T-Coffee second step

- After the primary library was created, the program assigns a **WEIGHT** to each pair of aligned residues in the library.
- For each set of sequences – 2 primary libraries are computed along with their weight: **Global** + **Local** alignments.
- The library becomes a **list of weighted pairwise aligned scores**.
T-Coffee third step

- Combination of the Global and Local weights to one Primary Library

- Checking the weighted pairs:
 - If the pair of seqs is duplicated (appears) in the 2 libraries, it is merged into a single entry with weight equal to the sum of the 2 libraries weights
 - Otherwise a new entry of this pair is created
T-Coffee fourth step

Library Extension

- Is the process where the program assigns a weight for each pair of aligned residues in the Primary Library.

- This weight reflects the degree of a pair consistency in all the seqs in the dataset

- The Extension is done by the Triplet Approach
The Triplet Approach

SeqA GARFIELD THE LAST FAT CAT
SeqB GARFIELD THE FAST CAT
SeqC GARFIELD THE VERY FAST CAT
SeqD THE FAT CAT
SeqA GARFIELD THE **LAST** **FAT** **CAT**
SeqB GARFIELD THE **FAST** **CAT** ---

SeqA GARFIELD THE **LAST** FA-T **CAT**
SeqC GARFIELD THE **VERY** **FAST CAT**

SeqA GARFIELD THE **LAST** **FAT** **CAT**
SeqD ---------- THE ----- **FAT** **CAT**

SeqB GARFIELD THE ----- **FAST** **CAT**
SeqC GARFIELD THE **VERY** **FAST CAT**

SeqB GARFIELD THE **FAST** **CAT**
SeqD ---------- THE FA-T **CAT**

SeqC GARFIELD THE **VERY** **FAST CAT**
SeqD ---------- THE ----- FA-T **CAT**

Prim. Weight = 88
Prim. Weight = 77
Prim. Weight = 100
Prim. Weight = 100
Prim. Weight = 100

Figure from JMB Vol 302, pp205-217, 2000
c) Extended Library for seq1 and seq2

<table>
<thead>
<tr>
<th>SeqA</th>
<th>GARFIELD THE LAST FAT CAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqB</td>
<td>GARFIELD THE FAST CAT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight = 88</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SeqA</th>
<th>GARFIELD THE LAST FAT CAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqC</td>
<td>GARFIELD THE VERY FAST CAT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqB</td>
<td>GARFIELD THE FAST CAT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight = 77</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seq1</th>
<th>GARFIELD THE LAST FAT CAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqD</td>
<td>THE FAT CAT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SeqB</td>
<td>GARFIELD THE FAST CAT</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight = 100</td>
<td></td>
</tr>
</tbody>
</table>

Figure from JMB Vol 302, pp205-217, 2000
Extended Library

SeqA GARFIELD THE LAST FAT CAT
SeqB GARFIELD THE ---- FAST CAT

Dynamic Programming

Figure from JMB Vol 302, pp205-217, 2000
The complete extension of the Primary Library (check all triplets of the dataset) will assign a weight for each pair of residues that is a sum of all weights gathered for all the triplets that contain the pair.

The more sequences supporting a pair alignment – the higher is its weight

By using pair weights specific to the dataset instead of matrix scores the multiple alignment is much more powerful
Progressive Alignment of the extended library set is done by dynamic programming algorithm to achieve the final multiple alignment of the dataset.
T-Coffee Summary

- Good for a limited number of sequences
- Takes long time to run – not good for a large dataset (the newer versions run faster, but the accuracy of large datasets may be questionable)
- Does not deal well (misaligns) sequences which vary a lot in their length
Bottom Line

- Speed: Muscle > ClustalW >> T-Coffee
- Accuracy (Generally):
 Muscle >= T-Coffee > ClustalW
- Accuracy depends on the individual sequence family, and for some the order is different...so use more than one algorithm!