Markovian Domain Fingerprinting: Statistical Segmentation of Protein Sequences

Gill Bejerano

Yevgeny Seldin

Hanah Margalit*

Naftali Tishby

jill@cs.huji.ac.il

seldin@cs.huji.ac.il

hanah@md2.huji.ac.il tishby@cs.huji.ac.il

School of Computer Science & Engineering and *Hadassah Medical School

The Hebrew University of Jerusalem

Abstract: We present a novel method for protein sequence domain detection and classification. Our method is fully automated and does not require or attempt a multiple sequence alignment. It handles well heterogeneous multi-domain groups regardless of domain ordering within different proteins. The method constructs unique domain signatures through clustering regions of conserved statistics Examples pinpoint domain boundaries, detect a protein fusion event, refine an HMM superfamily classification and find all 12 instances of a domain in 396 unaligned multi-domain sequences.

Biological Motivation (I)

- · Proteins are Linear molecules, responsible for nearly all activity taking place within every living cell.
 - · Reading the linear sequence is easy
 - Determining or deducing the fold is hard. What then can be said of the function?

Observation: Proteins with similar sequences usually fall into similar folds, and the fold itself is crucial for preserving function. Definition: Protein family - a group of proteins

sharing sequence similarities (and hopefully also origin, fold and function).

Challenge: Group protein sequences into meaningful families

Protein Family Classification using Variable Memory Models

<u>Input</u>: a subset of related sequences (some known family members).
<u>Objective</u>: Generate a model that can discriminate between
(previously unseen) family members and non-related proteins. Current state of the art: profile Hidden Markov Models

- Disadvantages:

 Known hardnes-of-training results, with implications on data requirements, training and prediction speed.

 The need for a multiple alignment of the training data.

 Essentially very short memory, affecting sensitivity.

Proposition: Model the training data as if the sample sequences all originate from a Markov model of varying (high) order. Such a model was presented in [Ron, Singer & Tishby '96, Mach. Learn.], where predictive contexts of variable lengths are collected during training, into an efficient data structure representation named Prediction Suffix Tree (PST).

Given a PST model T, a query sequence $x_1...x_m$ is scored through $P^{T}(\mathbf{x}_{1} \dots \mathbf{x}_{m}) = \overline{\Pi_{i} P(\mathbf{x}_{i} | \mathbf{x}_{1} \dots \mathbf{x}_{i+1}) \approx \Pi_{i} P(\mathbf{x}_{i} | \mathbf{max_suf}(\mathbf{x}_{1} \dots \mathbf{x}_{i+1}))}$ where $\max_{\mathbf{x}_1,\dots,\mathbf{x}_{l-1}}$ is the longest suffix of $\mathbf{x}_1,\dots,\mathbf{x}_{l-1}$ memorized

A PST over the alphabet {a,b,c,d,r}

·Node labels represent memorized suffixes, and adjacent vectors are the associated next symbol distributions.

•Max_suf is found by traversing down the tree until leaf/stuck.

during training, E.g.

so $P^{T}(braad) = P^{T}(b) P^{T}(r|b) P^{T}(a|br) P^{T}(a|bra) P^{T}(d|braa)$ $= P^{T}(b|\lambda) P^{T}(r|\lambda) P^{T}(a|r) P^{T}(a|bra) P^{T}(d|a) = 0.2 \cdot 0.2 \cdot 0.6 \cdot 0.1 \cdot 0.2$

Single PST Learning Algorithm Outline

(Intuitive version:)

- · Initialize a PST with a single root node (annotated by the overall per-symbol distribution).
- Go over all subsequences $\sigma_1 \dots \sigma_k$ of length k=1..L, which are found (anywhere) within the training sequences in sufficient quantities.
 - For each, ask whether the distribution of the next symbol after $\sigma_1\sigma_2...\sigma_k$ significantly differs from that after $\not\propto \sigma_2...\sigma_k$.
- If so, add node σ₁...σ_k, and all the nodes on its path from the root, into the PST.
- Finally, smooth vectors such that no prediction yields probability zero.

E.g., **b** is the only predictive suffix extension to **ra** here:

___brad.__drad.__ ___crab.__drai rab.....brad...

Empirical Results

In [Beierano & Yona, Bioinform, '01] PST models are used to reconstruct all Pfam (v1.0) families from Swissprot (v33). Pfam is a database of profile HMMs trained in a semi-automatic manner from quality seed alignments, to model protein domain families.

The new method outperformed gapped-BLAST and was comparable to the curated Pfam HMMs as well as SAM (v2.2) and HMMER (v2.1).

Performance of a PST for the Neuro-Performance of a PS1 for the Neuro-transmitter-gated ion-channels, plotting the minus log likelihoods of all Swissprot sequences vs. their lengths. O marks family seed members, X previously unseen family members, and + the rest of Swissprot.Clear separation can be seen between + and O, X.

- ◆ Faster training and prediction run-time ([Apostolico & Bejerano, J. Comp. Biol. '00] show how to implement PSTs in linear time).
- The lack of need for a multiple alignment or human supervision.
- Resistant to over-fitting related error (deeper nodes seldom in use)

Biological Motivation (II)

Observation: Proteins are composed of distinct organizational units, usually connected by relatively unstructured linker regions.

<u>Definition</u>: Protein domain – a subsequence of a protein, which can fold independently into a compact stable 3-D structure

A typical domain is of length 50-350 amino-acids (aa), and a protein may have from one up to several dozen domains

associated with different functions

The domains are usually the more conserved parts in a protein family. <u>Challenge</u>: segment proteins into domains and group instances.

Protein Sequence Segmentation: **Domain Boundaries Determination**

In [Bejerano et al., Bioinform. 01] we apply the novel segmentation alg.

to groups of multi-domain proteins. Each group shares a single domain. We find that in the protein context two types of models result:

Detector models - peek in specific regions and perform below average elsewhere Noise models - perform averagely over all the data. These are easily discarded.

Right: Top - the unsupervised segmentation of a protein induced by our models, compared to the correct domain assignment shown above the X axis. Bottom - the same protein segmented by an alignment-based method (clustal X). The second, homeobox domain, appearing in only 1/2 the family members is found above, and lost in the noise below

Refinement of an HMM classification Glutathione S-Transferases

- · Five classes of GST proteins are known; alpha, mu, pi, sigma, theta. · Sequence similarities between the different classes are very high.
- In particular the sigma and theta classes are not well defined. S-crystallin refractory lens proteins probably lack the GST catalytic
- activity but show a high degree of sequence similarity to the GSTs. Pfam (v5.4) contains a single HMM model for all GST classes and
- the S-crystallins together, as class dissimilarities are too subtle for it.
- Our algorithm yields four additional signatures on this group, of:
- 1. S-crystallins
- 2. Alpha + pi classes.
- 3. Putative theta sub-class.
- 4. All 12 out 396 unaligned sequence (3%) where the GST domain is followed by the elongation factor 1 gamma (EF1G) domain

Sequence Segmentation

Observation: A single PST model for a protein family appears to distinguish between more and less conserved regions within family members, in correspondence to domains and linker regions, respectively

Competitive Learning approach: Iteratively split the original PST such that its sons have to compete over the training data.

The ones that better predict a segment get a bigger handle over it.

In [Seldin, Bejerano & Tishby, lcml'01] we embed this approach in a Deterministic Annealing framework that tries to infer the correct number of underlying PST models. This is done by gradually increasing a resolution parameter β governing the hardness of data assignment to models.

Detection of a Protein Fusion Event DNA Topoisomerase II

Above - schematic description of the relationship between a protein in higher organ isme (1) and the two proteins that apparently fill together the same role in lower organisms (2). Right - results of segmenting a heterogenous set containing all known proteins bedronging to the groups of (1-3). Bottom left - signatures of the two

domains in (2). Bottom right - the signature of the domain in (3). Top - A representative of group (1) showing the correct signatures, one from (2) and one from (3).

Segmentation Algorithm Outline Input: Set of unaligned sequences

- * Grow a single PST over the data Split each PST into two replicas and perturb copies anti-symmetrically.
- Repeat until convergence: Repartition (soft) the data prop. to
- the performance of the new models ° Retrain the models on the data
- given its new reweighing. Remove emptied models, and split. * When the number of models stops
- growing, increase β. Terminate when β reaches β_{Tin} Output: Resulting PST models.

Future Directions

- Analysis of the relationship between protein fold & function and the acquired statistical signatures.
- Application to DNA sequence analysis

Bibliography

- Ron, Singer & Tishby (1996). Machine Learning 25, 117-149.
- Beierano & Yona (2001), Bioinformatics 17(1), 23-43,
- Apostolico & Bejerano (2000). Journal of Computational Biology 7(3/4), 381-393.
- Seldin, Bejerano & Tishby (2001). Proc. 18th International Conference on Machine Learning (ICML-01), 513-520. Bejerano, Seldin, Margalit & Tishby (2001). Bioinformatics 17(10), 927-934, and 3rd Georgia Tech Emory
- International Conference on Bioinformatics.

Papers available via http://www.cs.huji.ac.il/~jill