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Genetic linkage analysis is a useful tool for map-
ping disease genes. It allows one to use statisti-
cal tools to associate functionality of genes to 
their location on the chromosome. Generally 
speaking, this analysis uses a probabilistic model 
of inheritance of genetic materials and applies it 
to data in the form of pedigrees, where some of 
the individuals are annotated with information 
on the trait of interest and information on their 
genetic makeup. As highly-informative genetic 
marker maps have been developed, multipoint 
linkage analysis has become a crucial part in 
linkage analysis studies due to its supremacy on 
pairwise linkage analysis for locating genes and 
detecting linkage. However, the computational 
complexity required to perform such calcula-
tions increases exponentially due to the large 
number of markers that participate in the analy-
sis, the high polymorphism of the markers under 
study, the size of the pedigree, and the number 
of untyped people in the pedigree. These fac-
tors highly constrain the space and time require-
ments of existing programs. Some programs fail 
to run as the number of markers, the degree of 
polymorphism of the markers, or the size of the 
pedigree increase. Other programs can handle 
a large number of markers but can only analyze 
small pedigrees. We have addressed the increas-
ing need for a program that performs multipoint 
likelihood calculations on general pedigrees with 
a higher number of polymorphic markers. We 
implemented our algorithms in a computer pro-
gram, called Superlink, that computes pedigree 
likelihood for complex diseases in the presence 
of multiple polymorphic markers in fully gen-
eral pedigrees, taking into account a variety of 
disease models. Superlink compares favorably 
with current linkage software with regards to the 
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following criteria: functionality, speed, memory 
requirements and extensibility. This can be seen 
from the experimental results described below. 

Currently, there are two main approaches to 
computing pedigree likelihood exactly: Elston-
Stewart [3] and Lander-Green [5,6,7]. Both of 
these algorithms are variants of variable elimi-
nation methods [2,16] that depend on differ-
ent strategies to finding an elimination order. 
The complexity of the Elston-Stewart algorithm 
is linear in the pedigree size (for pedigrees 
with a simple structure) but exponential in the 
number of markers. On the other hand, the 
Lander-Green method is linear in the number 
of markers but exponential in the number of 
individuals. In Superlink, we used the framework 
of Bayesian networks as the internal representa-
tion of linkage analysis problems [4]. Using this 
representation allows us to give a unified treat-
ment to both approaches and to handle a wide 
variety of linkage analysis problems. Whenever 
feasible, we use variable elimination alone to cal-
culate the likelihood of the pedigree. Otherwise, 
our algorithm combines variable elimination with 
conditioning (a divide and conquer approach) 
to achieve the best time-space tradeoff given 
the memory available for the linkage analysis 
problem. The crucial point of the algorithm is 
that conditioning is performed only after some 
steps of variable elimination, when the memory 
requirements are about to exceed the limita-
tions. Such conditioning often applies only to 
parts of the Bayesian network and thus, compu-
tations in other, unrelated, parts of the network 
are not repeated unnecessarily. The elimination 
order is chosen automatically according to the 
parameters of the specific linkage problem. For 
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small pedigrees with a large number of markers, 
the algorithm chooses a peeling order, based 
on the Lander-Green approach, that proceeds 
locus after locus. For large pedigrees with a few 
markers, the algorithm chooses an Elston-Stew-
art style elimination order which “peels” one 
nuclear family at a time. Other linkage problems 
are handled by finding a good elimination order. 
Often the program chooses an elimination or-
der that is a combination of these two extreme 
known choices of ordering. 

Another crucial feature of our program is the 
preprocessing step performed on the Bayesian 
network that reduces the range of values that 
are feasible for each variable given the data. This 
step often has a large impact on the memory 
and time requirements of the calculations. Su-
perlink allows for analysis of sex-linked traits and 
also allows for a disease phenotype to be under 
the control of two loci [11, 14, 15].

We have run several experiments to compare 
our program to some of the leading linkage pro-
grams currently, Fastlink [1, 8, 12, 13], Genehu-
nter [5, 6, 7] and Vitesse v1.0 [10]. We have not 
been able, so far, to try Vitesse v2.0 [9] but we 
have indications that our program outperforms it 
on all inputs. The running environment on which 
all experiments were performed was a Sun OS 
version 5.7 (sun4u) with 2624 MB RAM. In one 
of the experiments, we used 12 datasets with a 
medium sized topology taken from a coronary 
heart disease study and increasing complexity 
in terms of the number of loci. The pedigree 
size exceeds the size that can be handled by 
Genehunter and only the first few files can be 
run by Fastlink and Vitesse before the memory 
requirements become too large. Superlink can 
run on all the files except for the last one on 
which the computation will require over a 100 
hours in order to complete. It is also important 
to note that, for the files that could be run by 
Fastlink and Vitesse, the running times are 
shorter for Superlink. For example, datasetEA2, 
required 0.39 seconds by Vitesse and 79.32 

seconds by Fastlink and only 0.14 seconds 
by our program. DatasetEA5 required 84.66 
seconds by Vitesse and only 1.19 seconds by 
Superlink. This dataset cannot run on Fastlink. 
In another experiment we used a medium-sized 
looped topology. Vitesse doesn’t handle looped 
pedigrees and therefore failed to run on these 
files. Fastlink can only run on the first file and 
its running time is 3933.7 seconds, whereas 
Superlink takes only 2.56 seconds to run on 
this file. More experimental results, the full pa-
per, data sets, and executables, are available at 
bioinfo.cs.technion.ac.il/superlink 
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